马小鹏,讲师
电子邮箱:xiaopengma23@126.com,电话:15909298801,QQ:1273779481
通讯地址: 西安市雁塔区电子二路东段18号
教育经历:
2018.09至2022.06:中国石油大学(华东),油气田开发工程,博士
2016.09至2018.07:中国石油大学(华东),油气田开发工程,硕士(硕博连读)
2012.09至2016.07:中国石油大学(华东),石油工程,学士
工作经历:
2022.08至今:44118太阳成城集团,44118太阳成城集团,讲师
研究方向:
主要从事油藏数值模拟与油气田开发工程理论与方法;智能油藏(自动历史拟合、注采优化等);智能优化理论(大规模优化、多目标优化、代理辅助优化算法、多模态优化、约束优化等);机器学习理论(强化学习、迁移学习、图学习、卷积神经网络等)。
代表性论著:
[1]X Ma, K Zhang, C Yao, et al. Multiscale-Network Structure Inversion of Fractured Media Based on a Hierarchical-Parameterization and Data-Driven Evolutionary-Optimization Method [J]. SPE Journal. 2020, 25(05): 2729-2748.
[2]X Ma, K Zhang, L Zhang, et al. Data-Driven Niching Differential Evolution with Adaptive Parameters Control for History Matching and Uncertainty Quantification [J]. SPE Journal, 2021, 26(02): 993-1010.
[3]X Ma, K Zhang, J Wang, et al. An Efficient Spatial-Temporal Convolution Recurrent Neural Network Surrogate Model for History Matching [J]. SPE Journal, 2022, 27(02): 1160-1175.
[4]X Ma, K Zhang, L Zhang, et al. A distributed surrogate system assisted differential evolutionary algorithm for computationally expensive history matching problems [J]. Journal of Petroleum Science and Engineering, 2022, 210: 110029.
[5]X Ma, K Zhang, J Zhang, et al. A Novel Hybrid Recurrent Convolutional Network for Surrogate Modeling of History Matching and Uncertainty quantification [J]. Journal of Petroleum Science and Engineering. 2022, 210: 110109.
[6]X Ma, K Zhang, H Zhao, et al. A Vector-to-Sequence based Multilayer Recurrent Network Surrogate Model for History Matching of Large-scale Reservoir [J]. Journal of Petroleum Science and Engineering. 2022, 214: 110548.
[7] K Zhang,X Ma, Y Li, et al. Parameter prediction of hydraulic fracture for tight reservoir based on micro-seismic and history matching [J]. Fractals. 2018, Vol.26 (02): 1840009.
[8]马小鹏,张凯,陈昕晟,等.基于集合光滑的深度学习自动历史拟合方法[J].中国石油大学学报(自然科学版), 2020, 44(4): 68-76.
[9]张凯,马小鹏,王增飞,等.一种强非均质性油藏自动历史拟合混合求解方法[J].中国石油大学学报(自然科学版), 2018, 42(5): 89-97.
[10] K Zhang, J Zhang,X Ma, et al. History matching of naturally fractured reservoirs using a deep sparse autoencoder [J]. SPE Journal, 2022, 26 (04): 1700-1721.
[11] K Zhang, X Wang,X Ma, et al. The prediction of reservoir production-based proxy model considering spatial data and vector data [J]. Journal of Petroleum Science and Engineering, 2022, 208, 109694.
[12] K Zhang, H Yu,X Ma, et al. Multi-source information fused generative adversarial network model and data assimilation-based history matching for reservoir with complex geologies [J]. Petroleum Science, 2022, 19(2): 707-719.
[13] L Zhang, C Cui,X Ma, Z Sun, F Liu, K Zhang. A fractal discrete fracture network model for history matching of naturally fractured reservoirs[J]. Fractals, 2018, 27 (01), 1940008.
[14] Y Wang, K Zhang,X Ma, et al. A physics-guided autoregressive model for saturation sequence prediction[J]. Geoenergy Science and Engineering, 2023, 221: 211373.
[15] W Fu, K Zhang,X Ma, et al. Deep Conditional Generative Adversarial Network Combined with Data-Space Inversion for Estimation of High-dimensional Uncertain Geological Parameters[J]. Water Resources Research, 2023, 59(3): e2022WR032553.